Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa).

نویسندگان

  • S Ashkani
  • M Y Rafii
  • M Sariah
  • A Siti Nor Akmar
  • I Rusli
  • H Abdul Rahim
  • M A Latif
چکیده

Among 120 simple sequence repeat (SSR) markers, 23 polymorphic markers were used to identify the segregation ratio in 320 individuals of an F(2) rice population derived from Pongsu Seribu 2, a resistant variety, and Mahsuri, a susceptible rice cultivar. For phenotypic study, the most virulent blast (Magnaporthe oryzae) pathotype, P7.2, was used in screening of F(2) population in order to understand the inheritance of blast resistance as well as linkage with SSR markers. Only 11 markers showed a good fit to the expected segregation ratio (1:2:1) for the single gene model (d.f. = 1.0, P < 0.05) in chi-square (χ(2)) analyses. In the phenotypic data analysis, the F(2) population segregated in a 3:1 (R:S) ratio for resistant and susceptible plants, respectively. Therefore, resistance to blast pathotype P7.2 in Pongsu Seribu 2 is most likely controlled by a single nuclear gene. The plants from F(2) lines that showed resistance to blast pathotype P7.2 were linked to six alleles of SSR markers, RM168 (116 bp), RM8225 (221 bp), RM1233 (175 bp), RM6836 (240 bp), RM5961 (129 bp), and RM413 (79 bp). These diagnostic markers could be used in marker assisted selection programs to develop a durable blast resistant variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and Molecular Dissection of Blast Resistance in Rice Using RFLP, Simple Sequence Repeats and Defense-Related Candidate Gene Markers

Blast, Pyricularia grisea (Cooke) Sacc., is one of the most destructive diseases of rice worldwide and canresult in significant reductions in yield. The use of resistant cultivars is the most economical and effectiveway of controlling rice blast. A variety of DNA markers, including plant defense-related candidategene markers are available for genetic characterization and molec...

متن کامل

Genetic analysis and identification of SSR markers associated with rice blast disease in a BC2F1 backcross population.

Rice (Oryza sativa L.) blast disease is one of the most destructive rice diseases in the world. The fungal pathogen, Magnaporthe oryzae, is the causal agent of rice blast disease. Development of resistant cultivars is the most preferred method to achieve sustainable rice production. However, the effectiveness of resistant cultivars is hindered by the genetic plasticity of the pathogen genome. T...

متن کامل

Identification of Linked Markers for Delayed Fruit Ripening in Tomato Using Simple Sequence Repeat (SSR) Markers

Tomato (Solanum lycopersicum L.) is an important vegetable crop and acts as model plant for fruit development studies. Besides that, post-harvest damage is a devastating phenomenon often associated with ripening process in tomato which in turn leads to greater yield loss. Understanding the genetics, molecular and biochemical pathways is the key to overcome the existing situation. In th...

متن کامل

Population structure analysis and association mapping of blast resistance in indica rice (Oryza sativa L.) landraces.

Rice blast caused by Magnaporthe oryzae is one of the most devastating rice diseases worldwide. To understand the genetic diversity of indica landrace accessions and identify simple sequence repeat (SSR) markers that are associated with blast resistance, a population of 276 indica landraces from across the world was constructed. This population was then used to evaluate the blast-resistance phe...

متن کامل

Estimation of genetic diversity in rice (Oryza sativa L.) genotypes using SSR markers under salinity stress . Fatemeh Gholizadeh1* and Saeed Navabpour2

In order to study the genetic diversity in rice (Oryza sativa L.), 29 genotypes consisting land races, pure and improved lines were evaluated using simple sequence repeat (SSR) markers. A total of 30 SSR primers were used to amplify some part of rice genome in germplasms, the PIC values ranged from 0.07 (RM 340) to 0.71 (RM 7426) with an average of 0.45. The results showed a total number of 106...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2011